Technological Feasibility Analysis Report

October 23, 2020

Project Sponsor: Chris Doughty
Team Mentor: Andrew Abraham
Team Members: Kainoa Boyce, McKenna Chun, Gregory Geary, Wesley Smythe, and

Chufeng Zhou

Table of Contents

1 Introduction
2 Technological Challenges

3 Technological Analysis
3.1 Application Platform
3.2 Framework
3.3 Storage

4 Technology Integration

5 Conclusion

Appendix. Summary of Major Design Decisions.

NNy O W

15
17
19

1 Introduction

In the very near future, the northern white rhinoceros will exist only in memory, since they will
become one of the many species that become extinct every year from the rapid increase of
human intervention in the wilderness. The northern white rhinoceros in particular, has had it's
population drastically reduced down to just two females in recent years, due to an immense
amount of illegal poaching for their horns. Poaching however, is not the only problem that
plagues the biodiversity of places like tropical rainforests, many other human related factors
like climate change and logging cause drastic changes in the diversity of life. Therefore, it is
imperative that people everywhere be forewarned about the repercussions that stem from the
destruction and plundering of these luscious tropical habitats in biodiverse areas.

To help assist with this ongoing issue we, Team Biosphere, are working on creating an
application to spread awareness across different platforms. This application solely aims to
spread awareness about the preservation of biodiversity in tropical forest regions that are
vulnerable to human industrialization and interference.

Our team sponsors, Chris Doughty (primary client) and Andrew Abraham (mentor) have spent
numerous years investigating the interactions between forests, climate, and how animals affect
ecosystem functions. They have commissioned various projects in the past to create an
application to fulfil similar tasks to ours. However, these other applications fail to fully grasp the
potential of how versatile and adaptive modern technology can be.

Even though modern technology has developed the capability to access data across different
platforms, previous projects on this subject still fail to use this feature. These applications limit
their users to a specific format, such as exclusively to either mobile or web users. To overcome
these limitations, Team Biosphere, plans to utilize a new technology known as a progressive
web application (PWA), that can be accessed across any mobile or web format.

The application that Team Biosphere presents aims to support a wide variety of devices and
avoid limiting the client’s intended audience to one specific platform while providing the same
high quality data and information across all mediums equally. This includes access from any
device that is able to use an internet browser, from computers, to both Android and iOS
devices. A broad spectrum of choices for the users ensures that the application does not limit
the target audience. If the target audience is limited, our ability to spread awareness about the
loss of biodiversity is negatively impacted.

The application itself will have the ability to visualize the data generated from the user defined
or predefined scenarios. A scenario is a sequence of predicted / theoretical events that take
place over a period of change. The primary goal for this application is to select a specific
location using an interactive map, or with permission, using the user’s location. Using this
location information, the application will display information about the biodiversity in the area.
The user will then have the option to choose potential effect scenarios including: deforestation,

3

climate change, and poaching. These scenarios will be used to visualize the effects of an
action on an ecosystem and its levels of biodiversity.

Since storing and displaying the exact data on every single species on Earth is extremely
impractical and nearly impossible for ordinary devices, the data displayed is derived from the
Madingley Model. This scientific and peer-reviewed model provides a way to feasibly represent
life in ecosystems by using the unique interactions between animals to aggregate their data
into units called cohorts. In the technical sense, these cohorts occupy a much smaller amount
of digital space, and allows the model to be less computationally expensive.

In the model, the cohorts are able to accurately represent ecosystems by using the collected
data of any given biome or region including:

A The interactions between species such as predators and prey

A The total number of individuals

A The biomass content of both plant and animal life

These factors are then processed through a series of complex calculations made specifically
for the Madingley Model to define cohorts. They are also able to add elements to the formulas
to estimate how futuristic scenarios would affect the environment. One such impact would be a
trophic cascade, where an important species goes extinct and causes a huge change in the
food chain, which in turn changes the cohorts in a selected area. Team Biosphere’s application
intends to use these calculated values to display to the user and show specifically how the
scenario selected affects the chosen area.

The need to develop this application is the reason why Team Biosphere was established by
undergraduate computer science major students at Northern Arizona University. The team
includes students: Kainoa Boyce, McKenna Chun, Gregory Geary, Wesley Smythe, and
Chufeng Zhou, as well as the team’s mentor: Andrew Abraham. This document will provide an
overview of the different technical aspects of our project and our options for dealing with each
particular problem. It will also include the chosen candidate for each challenge, which will be
researched more thoroughly and used throughout the development process.

2 Technological Challenges

The focus of this section is to outline all foreseeable technical challenges that could occur
during the development and system design process. The system will be composed of the
following components:
d Code/Application Repository: A central location where all code and documentation
will be held.
d MVP Back-end: A program used to generate, process, and visualize the request
generated from the minimum viable product (MVP.)
[Stretch Back-end: A program used to allow end-users to define their own scenarios.
This data is then passed to the MVP Back-end for visualization.
[d Storage: An cloud-based storage system used to house the data associated with this
application.
d Web Variation: A browser based variation of the mobile application.
1 Mobile Variation: A mobile application.

Each of these components live in one of three domains. The domains are used to group
components by their function and user access. Each domain and their respective components
are defined as follows:
[Client: This domain is accessible by the client and consists of all front-end / public
facing components.
A Web Variation
A Mobile Variation
L Server: This domain is accessible by application administrators.
1 MVP Back-end
'd Stretch Back-end
1 Storage
d Admin / Developer: This domain is only accessible by application developers and
administrators.
A Code Repository

2.1 Cross platform development

The client has stated that it is ideal to have an application that is functional on both mobile and
desktop devices. In order to satisfy that requirement a single application must be compatible
across desktop and mobile machines; or multiple applications must be created, one per
device, and or operating system. The challenges associated with cross platform include:

A unpredictable display complications due to display screen variation.

A a lack of component compatibility due to a non-native approach, or multi-code-base

approach.
(A lack of support for specific operating system or browser versions.

2.2 Data Storage

The scenarios associated with the Madingley Model are

The data associated with each scenario range from 0.2GB to 8GB. As a result of the large file
size, a data storage component is necessary to stash these files. According to our client the
peak capacity will be about 1000GB. Given the possible max capacity of the file system, this
system must be easy to access, put data, and fetch data at high-speeds regardless of its
current capacity. In order to achieve this the storage system must be located in multiple
locations at once; this feature also allows for data redundancies to prevent data loss. The
primary concerns associated with data storage include:

A4 Cost per query or cost per gigabyte.

(A Data availability.

1 Compatibility with other components.

1 Read and write speeds.

2.3 Back-End Data Processing

Given that, the Madingley Model is computationally expensive, it is unrealistic to expect the
end-user to have the hardware to process the raw data generated from a scenario (See 2.2
Data Storage.) As such, a back-end system is required to process the information. The primary
options for back-end systems include: privately owned hardware or scalable cloud back-end
systems. Our client does not have the budget or space to accommodate a dedicated server
therefore a cloud system must be used. The primary concerns associated with cloud systems
include:

A Cost per activation.

' Unfamiliarity with serverless functions.

A Cloud system integration.

A Cloud system management.

2.4 Security

This application and system design require access and management of numerous resources
(i.e. data storage, application hosting, cloud service integration and management.) This allows
for multiple attack vectors. In order to prevent malicious actors from gaining unfettered access
into these systems, the must design the application and its components with security as the
primary focus. Security as a development forefront means limiting the user and system access
to a bare minimum, this is known as the principle of least privilege. By following information
security best practices the application will not only be more secure but have a longer longevity
because its design will not be obsoleted by Common Vulnerability and Exposures (CVEs.)

3 Technological Analysis

The main focus of this section is to provide an in-depth analysis of the major design decisions
that are required in order to establish a foundation on which to begin the project development.
This section consists of an overview of the more realistic choices, a further evaluation of those
choices, and a justified conclusion for each final decision. The four major design decisions
being evaluated are:

A Application

4 Framework

1 Storage

A Data Processing & Visualization (back-end)

3.1 Application Platform

The application must be available to use on one or more different platforms. With this being
said, and given that our potential end user’s of this application already own either an iOS,
Android, PC, or combination of those, devices, the top prospects for the type of application are
as follows:

A Native Mobile Application

A Web Application

A Progressive Web Application

3.1.1 Potential Application Platforms

In order to determine the best application type, below is a qualitative comparison of the
advantages and disadvantages of each application type.

Native Mobile Application(s): A native mobile application is an application that is
developed specifically to be used on a single mobile platform.

Advantages Disadvantages
1. Native applications have access to 1. In order to meet the client’s
more tools and components. specifications this would require at

least two different code-bases.

2. Native applications typically have 2. The interface would only
better performance. be accessible via mobile
devices / platforms.

3. Testing native applications is easier 3. Requires the user to download
than non-native applications, since and install the application, rather
native application are made for a than running it off a web-server.

single platform i.e. Android or iOS.

Table 1: The positive and negative aspects of using a native mobile application for this project.

Web Application: A web application is an application that is developed to be used by any
device with an internet connection and access to a web browser.

Advantages Disadvantages
1. Not limited to a specified device or 1. Requires an active internet
operating system. connection / unavailable offline.
2. Much easier development process, 2. Slower than mobile apps, and
testing only needs to be done on less advanced in terms of features.

different browsers and screen sizes

Table 2: The positive and negative aspects of using a web application for this project.

Progressive Web Application (PWA): A progressive web application is an application
delivered through the web, built using web technologies (i.e. HTML, CSS, JS.) It is
intended to work on any platform that uses a browser, including both desktop and mobile

devices.
Advantages Disadvantages
1. Available to any device with a 1. Difficult development process since testing
browser. must be done on all 3 platforms (iOS app,

Android app, PC web browsers)

2. Can be downloaded as a 2. Our team has the least experience
native mobile application for with PWA development
both iOS and Android devices.

Table 3: The positive and negative aspects of using a progressive web application for this project.

3.1.2 Chosen Approach

The choice we decided to go with was the Progressive Web Application. The issue with
developing two separate native mobile applications is that it entails far too much overhead and
still doesn’t provide a web application. The issue with just doing the web application is that
there would then be no offline version of the application. It was determined that the target
audience prefers an application interface in comparison to a web browser for mobile devices.
The only downside to developing a PWA is that the team has very little to no experience with
that realm of development. The team plans to overcome this because the development of the
application as a PWA allows for the highest possibility of widespread use, and provides the
most accessibility to the application for its potential users.

3.1.3 Proving Feasibility

In order to prove that a progressive web application is the best choice for this project. The
team will develop sample applications that will run across multiple platforms. The team will
demonstrate the increased usability for users in both the mobile and web applications.

3.2 Framework

Given that application being developed will be a PWA, this section outlines and evaluates
various possible frameworks. The possible choices for this design choice has been narrowed
down to the following:

. AWS Amplify’s built-in Ul framework

4 lonic

4 React

A Flutter

3.2.1 Potential Frameworks
In order to determine the best framework for this project, below is a qualitative comparison of
the advantages and disadvantages of each framework option.

AWS Amplify’s built-in Ul framework: AWS Amplify is a cross-platform development
framework belonging to the mass cluster of Amazon’s web services. It was designed to allow
for extreme ease of integration, however being a newer technology, it still has many kinks
that may need to be worked out.

Advantages Disadvantages
1. Consolidation of tools required for 1. Can be sporadic, somethings work
application development (AWS sometimes and not others for
Console.) seemingly no apparent reason.
2. Smooth integration with other AWS 2. Newer technology and has far less
services. online resources for

trouble-shooting/learning.

Table 4: The positive and negative aspects of using AWS Amplify’s built-in Ul for this project.

lonic: lonic is another development framework used for building cross-platform mobile
applications, and web applications. The framework uses a shared library of web
development standards which allows for great PWA development.

Advantages Disadvantages
1. Many built in Ul features within the 1. Deeper customization to native
framework. devices is much harder to achieve.
2. Runs the most consistently throughout 2. Possible lack of access to native
all desired platforms. Components.

3. Development process is easier
because of this consistency.

Table 5: The positive and negative aspects of using lonic for this project.

React Native: is a cross platform development framework created by facebook that has
become popular amongst developer’s. Because of its ability to use javascript code to

essentially directly control the native platform Ul, React Native has become a favorite among

those who are looking for great performance on native platforms.

Advantages Disadvantages
1. React has a lot of Native features 1. Code base doesn'’t transition as easily
embedded in its code base. between platforms.
2. Uses existing and known web 2. React Native does not come with a lot
languages. of pre-built are require conditional logic
for multiple OS.

3. Simple development process

Table 6: The positive and negative aspects of using React Native for this project.

10

Flutter: Flutter is Google’s new cross platform development framework that offers many
built-in widgets and tools that compile on the native platform itself incorporating all major
platform differences minimizing the amount of shared code within the application.

Advantages Disadvantages
1. Newer possibly “up and coming technology” 1. Uses a new language, Dart,
for cross platform development. which does not have a large
community.

2. Offers great mobile application performance

Table 7: The positive and negative aspects of using Flutter for this project.

3.2.2 Chosen Approach

The team decided to go with lonic as the framework choice. AWS Amplify was a favorite for a
short time because of the consolidation of resources that would be used with the Ul and
Backend both being AWS, along with the expected ease of integration from front to backend,
however the newer and somewhat sporadic framework was thought to cause unnecessary
difficulty to the team, given the developers have little to no cross-platform development
experience. React was a solid contendant as well since it is a fast growing skill among
developers and offers great mobile performance, the only issue was when researching and
testing, the team found that the amount of code that React required much more code to
develop. lonic, on the other hand, does not have this unnecessary overhead. Flutter being the
shiny new framework that it is, was an intriguing choice especially because it might become a
very popular framework in the near future, however when conducting creating sample
applications, it was determined that Flutter was too difficult to work with especially because of
the fact it uses a separate programming language Dart, rather than being primarily composed
of Typescript/Javascript. Because lonic was found to provide the most consistency between
the three platforms, along with its fair share of online resources, offering a much smoother
PWA development experience, it was the final choice for the application’s framework.

3.2.3 Proving Feasibility

In order to prove the feasibility of lonic as a framework for developing a progressive web app.
The team plans to build a sample PWA using lonic, and documenting its ease of use between
mobile platforms and browsers. This will demonstrate that this framework will provide for the
most efficient development process while also meeting all the requirements necessary for a
fully-functional PWA.

11

3.3 Storage

Data storage will be key in providing data in the progressive web application, and we are given
multiple choices in regards to how we will store the data. As this is a progressive web
application, we are able to adapt and utilize some forms of normal web application storage
tools in our development. Since one of our major challenges is specifically the accessibility to
an extremely large quantity of data, it is essential that our application has a reliable and fast
database that can fetch data quickly and efficiently for our users. We also require a low level
API for local data management in our progressive web application, the selection that we are
given extends to all current available normal web application APIs.

3.3.1 Potential Storage Options
In order to determine the best storage option, below is a qualitative comparison of the
advantages and disadvantages of each storage option.

Amazon Web Services S3: Amazon Web Services or more commonly known as AWS,
offers a wide range of tools and services that have been refined to assist in all sorts of
situations for development. In our case we are looking into AWS’s S3 module that allows for
the easy access of data chunks that can vastly range in size, allowing from a single byte all
the way to a few terabytes, and can all be transferred. It does this by using it's own
developed object called a bucket, which allows any sort of data being transferred to be
stored in a bucket object for easy sending and retrieval of the data.

Advantages Disadvantages
1. Official documentation on Github on support 1. Possibly costly in the long-term
between AWS and the lonic Framework with hidden fees

allowing for easier development.

2. Fast executions of retrievals of data,
extremely useful for our application that
needs to move data to users quickly.

3. Can transfer extreme amounts of data at a
time, ranging from bytes to a few terabytes.

Table 8: The positive and negative aspects of using Amazon Web Services S3 for this project.

12

Microsoft Azure Blob: Microsoft Azure is AWS’s main competitor in the field, as Azure itself
is extremely similar to AWS in terms of having many different database services for specific
uses. The rival to AWS’s S3 module is Azure’s Blob service, which offers a similar
experience in having its own object that it uses to transfer data. However, instead of a bucket
object, Azure uses typical data types such as tables and Binary Large OBjects, commonly
abbreviated as BLOBs. While it does not offer the peak performance as other options, this is
very budget friendly and scales well towards smaller projects such as ours.

Advantages Disadvantages
1. One of the most economically viable 1. While extremely reliable, can be
options for storage space. somewhat limited in terms of
usage.

2. Reliable and trustworthy enough to
transfer data securely and efficiently on
the scale of our project.

3. Can scale the amount of storage space
for project sizes, from large multi billion
dollar company programs to small group
projects.

Table 9: The positive and negative aspects of using Microsoft Azure Blob for this project.

Google Cloud: Google Cloud is one of the most popular cloud storage providers for
consumers, rivaling other tech giants Microsoft and Amazon in terms of pricing and
capabilities. It also shines in accessibility from anywhere on the globe, where accessing data
is fast and easy due to low latency provided from it's numerous hosting locations that can
store and send data.

Advantages Disadvantages
1. Can be cheaper than AWS in specific 1. While extremely reliable, can be
instances, depending on what services somewhat limited in terms of
are chosen. usage.
2. Allows for fast and easy accessibility from 2. Very simplistic in terms of storage
anywhere in the world. and tools, does not provide much
outside support other than the
basics.
3. Does not have a minimum size for 3. Many instances it becomes more
objects being transferred, can select as Costlly than AWS and may offer lower
much or as little data requested. quality service.

Table 10: The positive and negative aspects of using Google Cloud for this project.

13

Kumulos: A smaller company than the three tech giants, Kumulos provides storage space
for numerous prominent companies that can prove it's a viable option in comparison to their
larger rivals. Kumulos is slightly different than the other options in here as well in technical
terms, as it not only allows consumers to get storage space but also provides a wide range
of services to help develop mobile and web applications.

Advantages Disadvantages
1. Helps to report crashes that occur when 1. Mostly aimed towards standard
transfering data. mobile application development.
2. Has many smaller features included in it's 2. Less known than the other options,
own SDK that can help to develop and fix so less community development and
support.

problems.

Table 11: The positive and negative aspects of using Kumulos for this project.

3.3.2 Chosen Approach

It was determined that AWS S3 will be the best solution for the application. AWS S3 provides
numerous helpful tools in regards to developing a database and maintaining it. It also provides
top quality service with a 99.9% uptime as well as quick and easy data transfer.

3.3.3 Proving Feasibility

The capabilities of AWS S3 can be demonstrated by creating a moderate sized sample dataset
or data lake using their service and running numerous tests transferring data back and forth
from our application to the cloud storage. This test could be done and tried with many different
factors, a few including: location from where the data would be accessed. Since our application
will be used around the world it is important that AWS S3 has numerous data redundancies to
allow users to retrieve data around the world, and at any time.

14

4 Technology Integration

One of the main challenges so far was finding a way to integrate several different services that
could satisfy all the requirements. We needed to find services that could add a Ul framework,
data storage, data processing, and visualization component. Finding services that work
together for that many different things is difficult, but it is possible. Fortunately, one of the
services we were looking at allowed us to add multiple components with just one service. We
believe that the combination of lonic and AWS will allow us to build a progressive web app that
implements all the requirements.

The first part of our solution will be the data storage through AWS. This will allow programmers
to store the predefined simulations in a particular location, so that they can be accessed by the
user later. When the user selects the simulation, it will retrieve that data from the AWS storage.
From there, it will use the lonic defined front end to display the information to the user.

Another part of the project that will require a couple of the services is the Ul framework. Once
the user enters an area that they want information on, the information will be retrieved from the
proper spot in the data storage. This might be kind of difficult depending on the region that was
selected. If a user selects a wide range of biodiversity, we will be tasked with getting cohort
information from several different spots of memory storage. Parsing through the data stored
will require an algorithm tailored specifically to the Madingley model.

Additionally, if we use lonic it will allow us to create an iPhone application, Android application,
and a web application all at the same time. This will save us time from having to learn Swift
programming language or writing two different sets of code for web applications and an
Android application. This will greatly reduce the amount of time that is needed to implement
the Ul interface across multiple devices.

15

RAdmin 7 Developer Side

Application Repository

Administrative Account

[J
L,

Server Side

lonic Web Variation

Mobile Stores

A

Client Side f
I

l:]« ————————— J AWS Lambda - AWS Lambda - AWS S3
- MVP Goal Stretch Goal
End-User:

I
Desktop |

End-User:
Mobile

Figure 1.1 These are the key components of the application. There are three sides to the
system design: admin/developer side, server side, and client side. To connect each component
in a side and connect one side with another side, our application uses five different
interactions. The first interaction that is shown in this diagram is represented by a solid black
line. These connections can only be accessed by privileged users or developers. The second
line style is the dashed black lines. The dashed lines symbolize an end-user who makes a
request to a public system. For this program, the public system will either be a mobile
application or an lonic Web application, depending on what the user selects. The third
connection is the double-dotted lines. This line formation is used to show how the end-user
indirectly accesses that part of the system. Another interaction we see is the solid pink line.
This line models the relationship between the MVP and the stretch goals. This relationship is
necessary because the MVP will be used to process the stretch goal data. Lastly, the solid
purple line demonstrates the connection between the Back-end function and the database.

16

5 Conclusion

While it is sadly much too late to save the northern white rhinoceros, the sorrow from this loss
of biological diversity will not have to repeat itself in the future. With this application, we expect
that our users around the world will become more aware about the saddening and catastrophic
scenarios that may occur from continuing malicious human activities in the wild.

We also hope that the project is able to gain enough support in order to finally bring about
some change in this long standing issue that has lurked on our planet for so many years.
Though this may seem like a simple optimistic thought, with the application being able to
support such a wide variety of devices, the diversity of our users will hopefully be as diverse as
the habitats they will learn about.

During the design, development, and implementation of this project it is predicted that we will
encounter numerous issues regarding: security, cross-platform compatibility, back-end data
processing, and data storage. The above-mentioned concerns were addressed and have been
outlined in a general plan including the technology of choice, and alternatives.

The table below (see Table 12) outlines a high level summary of the forecasted design
challenges as well and the outcome.

In terms of the platform choices, we chose a Progressive Web application because it would
allow for the development of a mobile and web application using a single code base. The
greatest concern with this decision is that the team has little to no experience developing
PWA's.

Regarding the framework choices, the initial candidates include: AWS Amplify's built-in Ul
Framework, lonic, React, Flutter. It was determined that lonice would be the best choice
because it provided the most consistency, in comparison to the other candidates. lonic also
has a healthy online ecosystem, allowing a wide array of online resources, which will offer a
much smoother PWA development experience.

The primary challenge associated with the storage aspect involves the large file sizes. The
application must have a reliable and fast storage system to quickly fetch data for the end-user.
As a result of AWS S3'’s storage options, ease of access, and reliability it was the best choice
for development.

17

Challenge
Application Type

Framework

Storage

Challenges Summary

Choice

Progressive Web Application
(PWA)

lonic

AWS S3

Choice Description

A PWA will allow us to develop for a
website and mobile app using a single
codebase.

lonic is an established PWA framework
that comes with numerous built-in
components. Secondly, lonic has a
rather gentle learning curve, since it's a
javascript based framework.

AWS S3 offers a cheap, fast, and user

friendly way to store large sums of data.

Table 12: Challenges Summary Table

18

Appendix. Summary of Major Design Decisions.

o

ion Table

Platform

18] §

Data Storage

Possible probelms

lack of component compati

unforeseen display bugs due to screen size availabilit

ity due to the non-native approach

lack of support for speci

Alternatives

Pros

ific OS versions

Adaptation of different screen models

The large amount of data makes it difficult for users to query data on the mobile side

Cons

Choice

Pros

Cons

Pros

Cons

Native Mobile

1. Tools and
components aren’t
limited to that of a
cross-platform
framework

2. Applications

1. We would need a
native app for iOS,
and a separate native
app for Android in
order to provide an

usually run
with fewer bugs

for widespread use,

1. Smooth integration
with other AWS
services

2. Consolidation of

1. Can be sporadic,
somethings work
sometimes and not
others for seemingly
no apparent reason.

Amazon Web

1. Official documentation on
Github on support between
AWS and the lonic
Framework allowing for
easier development.

2. Fast executions of
retrievals of data, extremely

1. More costly to

Choice

2. Offers great mobile
application
performance

resources for
troubleshooting/lear
ning
3. Cannot yet build
web applications

2. Has many smaller features

in it's own SDK that
can help to develop and fix
problems

Aws maintain i i
Application 3. Testing is only resulting in an tools required for 2. Newer technology Services useful for our application antain fn comparison
’ S with competitors
required to be done |enormous amount of application and has far less that needs to move data to
on asingle platform |overhead. development (AWS online resources for users quickly
platform 2. The interface Console) trouble- 3. Can transfer extreme
The ability for user to |would only be shooting/learning amounts of data at a time,
have an offline accessible via a ranging from bytes to a few
version of the mobile device terabytes
application
1. One of the most
ically viable opti
1. Can be used by any 1. Runs the most wno:.o:._nu v viable options
or storage space
10T device with a web |1. Only accessible consistently throughout orage sp:
j 2. Reliable and trustworthy
browser when connected to all desired platforms))
)) Deeper customization gh to transfer data 1. While extremely
2. Much easier internet 2. Development process) zat e h
o L . 2. bev **| to native devices is . securely and efficiently on the|reliable, can be
Web Application |development process, |2. Only accessible via lonic is easier because of this Microsoft Azure ' e
much harder to scale of our project somewhat limited in
testing only needs to |a web browser (more consistency 2
) achieve 3. Can scale amount of terms of usage
be done on different |overhead for >
. storage space for project
browsers and screen |frequent users) features within the h yec
! sizes, from large multi billion
sizes framework
dollar company programs to
small group projects
1. Can be cheaper than AWS
in specific instances, 1. Very simplistic in
. Very simplistic in terms
1. Allows for more on what services Ty simp
Ve e) ; of storage and tools,
customization to native | 1. Code base doesn’t are chosen)
- ; does not provide much
device as easily between 2. Allows for fast and easy :
b mingly easy t Jatfor trom outside support other
. Is seemingly easy to orms ro
1.1s accessible from React eemingly easy P Google Cloud |° € |than the basics
ot use/pickup 2. Development in the world S e ..
. Many instances i
any evice WIth 2 1, pifficult 3. Testing & Build process can be more Does not have a minimum v
browser A e . . . becomes more costly
development process process is made very difficult for a PWA size for objects being
2.Can be : " : than AWS and may offer
downloaded/stored |5ince testing must be easy with Expo transferred, can select as Jower quality service
" doneonall 3 much or as little data we
Progressive Web latforms (iOS , requested
oBress application on both | P2tforms (10S app =
Application |° : Android app, PC web
i0S and Android .
) browsers) 1. Uses a coding
devices. 2. Our team has the language called Dart
3. Ability for the user |~ . N 1. Newer possibly “up 1. Helps to report crashes 1. Mostly aimed towards
" least experience with i .| that our team has no N)
to have an offline and coming technology”) ° that occur when transfering |standard mobile
° PWA development experience with care
version of the for cross platform o ; data application development
. Fewer online
Flutter development Kumulos 2. Less known than the

other options, so less
community development
and support

Table 13: Pros and cons for each of our design decisions. Discussed are the possible options for platform development, Ul

frameworks, and data storage.

19

